If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-9.8t=0
a = 4.9; b = -9.8; c = 0;
Δ = b2-4ac
Δ = -9.82-4·4.9·0
Δ = 96.04
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9.8)-\sqrt{96.04}}{2*4.9}=\frac{9.8-\sqrt{96.04}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9.8)+\sqrt{96.04}}{2*4.9}=\frac{9.8+\sqrt{96.04}}{9.8} $
| 2x*3x=200 | | x+0,3x=21 | | x/6+x/4=2 | | x+(1/3)x=21 | | x+1/3x=21 | | 13+1y^2-8y=0 | | x+8x+8x-16=154 | | (4x+6)/5=(8x-8)/6 | | 8k–5k=9 | | r+12.3=-4.6 | | (4x+6)/5=(8x−8)/6 | | |9x+1|19=9x+119 | | (4x+8)/5=6x+7 | | 3/x+1=4/5+x | | 3/×+1=4/5+y | | |3x+7|-13=3x+7-13 | | (7x+1)/7=3x-2 | | 3z/8-7=16 | | -9j+16j–19j–9=3 | | 3x-2=(7x+1)/7 | | (3x−2)=(7x+1)/7 | | -11h-7h+-20=16 | | -11h–7h+-20=16 | | x+7x+(7x-18)=72 | | 6x13=25 | | 3x−2=(7x+1)/7 | | 3x-3=1/2(6x-6) | | 8x-4=(8x+5)/2 | | 8x−4=(8x+5)/2 | | -4-n=27 | | (7x+8)/2=9x+1 | | 0.999x^2-6x+15=0 |